

GCE AS/A Level

0981/01

MATHEMATICS – M2 Mechanics

TUESDAY, 20 JUNE 2017 – AFTERNOON 1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- · a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Take g as $9.8 \,\mathrm{ms}^{-2}$.

Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.

© WJEC CBAC Ltd.

CJ*(S17-0981-01)

 The pos 	ition vector	of a	particle	P at time	t seconds	is giver	າ by
-----------------------------	--------------	------	----------	-----------	-----------	----------	------

$$\mathbf{r} = t \sin t \mathbf{i} + t \cos t \mathbf{j}$$
.

- (a) (i) Find the velocity vector of P and an expression for the speed of P at time t seconds in its simplest form.
 - (ii) Given that the mass of *P* is 3 kg, write down the momentum vector of *P* at time *t* seconds. [6]
- (b) At time $t = \frac{\pi}{6}$, the vector $b\mathbf{i} + \sqrt{3}\mathbf{j}$ is perpendicular to \mathbf{r} . Find the value of b. [5]
- **2.** A particle P, of mass 0.8 kg, moves along the x-axis so that its velocity at time t seconds is v ms⁻¹, where $v = 4t^3 6t + 7$. Given that the displacement of P is 5 m from the origin when t = 0, find
 - (a) the displacement of P from the origin when t = 2, [5]
 - (b) the force acting on P when t = 3. [4]
- 3. A vehicle of mass 3000 kg has an engine that is capable of producing power up to 12000 W. The vehicle moves up a slope inclined at an angle α to the horizontal, where $\sin \alpha = 0.1$. The resistance to motion experienced by the vehicle is constant at 460 N.
 - (a) Find the maximum acceleration of the vehicle when its velocity is $3 \,\mathrm{ms}^{-1}$. [4]
 - (b) The vehicle now travels at a velocity of $v \, \text{ms}^{-1}$ against an additional braking force of $10v \, \text{N}$. The other resistance to motion remains constant at 460 N. Determine the maximum value of v. Give your answer correct to 2 decimal places. [5]
- **4.** A and B are points a distance 18 m apart on horizontal ground. An object P is projected from A towards B with velocity 15 ms⁻¹ at an angle of 60° to the horizontal. Simultaneously, another object Q is projected from B towards A with velocity $v \, \text{ms}^{-1}$ at an angle of 30° to the horizontal. The objects collide.
 - (a) Find the value of v. [5]
 - (b) Show that the time from projection to collision is 0.6 seconds. [3]
 - (c) Determine the speed of the object P just before collision. [4]
- **5.** A vehicle of mass $4000 \, \text{kg}$ is moving up a hill inclined at an angle α to the horizontal, where $\sin \alpha = \frac{1}{20}$. At time $t = 0 \, \text{s}$, the speed of the vehicle is $2 \, \text{ms}^{-1}$. At time $t = 8 \, \text{s}$, the vehicle has travelled 30 m up the hill from its initial position and its speed is $5 \, \text{ms}^{-1}$. The vehicle's engine is working at a constant rate of $43\,000 \, \text{W}$. Find the total work done against the resistive forces during this $8 \, \text{second period}$.

- 6. A particle P, of mass 5 kg, is attached to one end of a light inextensible string of length 0.8 m. The other end of the string is attached to a fixed point O. Initially, the particle P is held at rest with the string OP taut and inclined at an angle of 60° to the downward vertical through O. The particle P is then projected with speed u ms⁻¹ in a downward direction perpendicular to the string, so that P starts to describe a vertical circle with centre O. When the string OP is inclined at an angle θ to the downward vertical, the speed of P is v ms⁻¹.
 - (a) Find, in terms of u and θ , an expression for v^2 . [4]
 - (b) Find, in terms of u and θ , an expression for the tension in the string when *OP* makes an angle θ with the downward vertical. [4]
 - (c) Determine the least value of u so that the particle describes complete circles. [2]
 - (d) Suppose that the string is replaced by a light rod. Determine the least value of u so that the particle describes complete circles. [2]
- 7. A particle of mass 2 kg is suspended from a fixed point O by means of an elastic string of natural length 3 m and modulus of elasticity λ N. The particle describes a horizontal circle with constant angular speed ω rad s⁻¹, with the string being of constant length lm, where l > 3. The centre of the circle A is vertically below O and the angle between the string and the downward vertical is θ .

- (a) Show that $\cos \theta = \frac{g}{l\omega^2}$. [6]
- (b) Given that the tension in the string is 20g N and $\omega^2 = 3g$,
 - (i) find the value of $\cos \theta$,
 - (ii) show that $l = \frac{10}{3}$,
 - (iii) calculate the value of λ ,
 - (iv) find the elastic energy in the string.

[8]