GCE AS/A Level

0981/01
\title{ MATHEMATICS - M2

Mechanics }

TUESDAY, 20 JUNE 2017 - AFTERNOON
1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The position vector of a particle P at time t seconds is given by

$$
\mathbf{r}=t \sin t \mathbf{i}+t \cos t \mathbf{j} .
$$

(a) (i) Find the velocity vector of P and an expression for the speed of P at time t seconds in its simplest form.
(ii) Given that the mass of P is 3 kg , write down the momentum vector of P at time t seconds.
(b) At time $t=\frac{\pi}{6}$, the vector $b \mathbf{i}+\sqrt{3} \mathbf{j}$ is perpendicular to \mathbf{r}. Find the value of b.
2. A particle P, of mass 0.8 kg , moves along the x-axis so that its velocity at time t seconds is $v \mathrm{~ms}^{-1}$, where $v=4 t^{3}-6 t+7$. Given that the displacement of P is 5 m from the origin when $t=0$, find
(a) the displacement of P from the origin when $t=2$,
(b) the force acting on P when $t=3$.
3. A vehicle of mass 3000 kg has an engine that is capable of producing power up to 12000 W . The vehicle moves up a slope inclined at an angle α to the horizontal, where $\sin \alpha=0 \cdot 1$. The resistance to motion experienced by the vehicle is constant at 460 N .
(a) Find the maximum acceleration of the vehicle when its velocity is $3 \mathrm{~ms}^{-1}$.
(b) The vehicle now travels at a velocity of $v \mathrm{~ms}^{-1}$ against an additional braking force of 10 vN . The other resistance to motion remains constant at 460 N . Determine the maximum value of v. Give your answer correct to 2 decimal places.
4. $\quad A$ and B are points a distance 18 m apart on horizontal ground. An object P is projected from A towards B with velocity $15 \mathrm{~ms}^{-1}$ at an angle of 60° to the horizontal. Simultaneously, another object Q is projected from B towards A with velocity $v \mathrm{~ms}^{-1}$ at an angle of 30° to the horizontal. The objects collide.
(a) Find the value of v.
(b) Show that the time from projection to collision is $0 \cdot 6$ seconds.
(c) Determine the speed of the object P just before collision.
5. A vehicle of mass 4000 kg is moving up a hill inclined at an angle α to the horizontal, where $\sin \alpha=\frac{1}{20}$. At time $t=0 \mathrm{~s}$, the speed of the vehicle is $2 \mathrm{~ms}^{-1}$. At time $t=8 \mathrm{~s}$, the vehicle has travelled 30 m up the hill from its initial position and its speed is $5 \mathrm{~ms}^{-1}$. The vehicle's engine is working at a constant rate of 43000 W . Find the total work done against the resistive forces during this 8 second period.
6. A particle P, of mass 5 kg , is attached to one end of a light inextensible string of length 0.8 m . The other end of the string is attached to a fixed point O. Initially, the particle P is held at rest with the string $O P$ taut and inclined at an angle of 60° to the downward vertical through O. The particle P is then projected with speed $u \mathrm{~ms}^{-1}$ in a downward direction perpendicular to the string, so that P starts to describe a vertical circle with centre O. When the string $O P$ is inclined at an angle θ to the downward vertical, the speed of P is $v \mathrm{~ms}^{-1}$.
(a) Find, in terms of u and θ, an expression for v^{2}.
(b) Find, in terms of u and θ, an expression for the tension in the string when OP makes an angle θ with the downward vertical.
(c) Determine the least value of u so that the particle describes complete circles.
(d) Suppose that the string is replaced by a light rod. Determine the least value of u so that the particle describes complete circles.
7. A particle of mass 2 kg is suspended from a fixed point O by means of an elastic string of natural length 3 m and modulus of elasticity $\lambda \mathrm{N}$. The particle describes a horizontal circle with constant angular speed $\omega \mathrm{rad} \mathrm{s}^{-1}$, with the string being of constant length $l \mathrm{~m}$, where $l>3$. The centre of the circle A is vertically below O and the angle between the string and the downward vertical is θ.

(a) Show that $\cos \theta=\frac{g}{l \omega^{2}}$.
(b) Given that the tension in the string is $20 g \mathrm{~N}$ and $\omega^{2}=3 g$,
(i) find the value of $\cos \theta$,
(ii) show that $l=\frac{10}{3}$,
(iii) calculate the value of λ,
(iv) find the elastic energy in the string.

